INTORQ electromagnetic clutches and brakes transmit the drive torque or braking torque by friction in dry running conditions. When the DC voltage is applied, torque transmission is achieved free from torsional backlash. The prestressed annular spring on the armature assembly ensures release without residual torque on de-energisation.

The prestressed annular spring on the armature assembly ensures release without residual torque on de-energisation. The various types of stator and armature assembly enable optimum adaptation to the prevailing operating conditions.

The catalogue will help you to select and order the electromagnetic brake and/or electromagnetic clutch you need.

This catalogue contains:
Electromagnetic clutches INTORQ 14.105
Electromagnetic brakes INTORQ 14.115,
transmitted torques 7.5 – 480 Nm

The catalog will help you to select and order the electromagnetic brake and/or electromagnetic clutch you need.

This catalogue contains:
Electromagnetic clutches INTORQ 14.105
Electromagnetic brakes INTORQ 14.115,
transmitted torques 7.5 – 480 Nm

The various types of stator and armature assembly enable optimum adaptation to the prevailing operating conditions.

The catalog will help you to select and order the electromagnetic brake and/or electromagnetic clutch you need.

This catalogue contains:
Electromagnetic clutches INTORQ 14.105
Electromagnetic brakes INTORQ 14.115,
transmitted torques 7.5 – 480 Nm
Contents

Product key 4
List of abbreviations 5
Product information 6
Selection
Dimensioning 8
Permissible switching energy/operating frequency 9
Calculation example
Technical data
Selection table 10
Flange-mounted and shaft-mounted electromagnetic clutches, electromagnetic brakes 17

Accessories
Transformer switch 19
Spark suppressor 20
High-speed switchgear 21
General information for assembly 22
Installation examples 23
Sales and service around the world 24
Product key

INTORQ 14.105 electromagnetic clutches, 7.5 – 480 Nm
INTORQ 14.115 electromagnetic brakes, 7.5 – 480 Nm

Type INTORQ 14.1□□□. □□. □□ □□□ □□□□ - □□□□□□
Size
Stator type
1 – Flange-mounting type
3 – Type with bearings
Armature assembly type
1 – With external flange hub
2 – With internal flange hub (for brakes only)
3 – Without flange hub
5 – With flange hub on bearings (for clutches only)
Variants
Supply voltage
Rotor bore
Armature assembly bore

Size
06, 08, 10, 12, 16, 20, 25

Stator type
1 – Flange-mounting type
3 – Type with bearings
List of abbreviations

\(\text{MK} \quad [\text{Nm}] \) Rated clutch/brake torque

\(\text{M}_{\text{load}} \quad [\text{Nm}] \) Load torque

\(\text{Ma} \quad [\text{Nm}] \) Acceleration/deceleration torque

\(\text{M}_{\text{req}} \quad [\text{Nm}] \) Required torque

\(\text{P} \quad [\text{kW}] \) Drive power

\(\text{P}_{20^\circ\text{C}} \quad [\text{W}] \) Coil power load clutch/brake at 20°C

\(\text{n} \quad [\text{rpm}] \) Clutch/brake speed

\(\text{J} \quad [\text{kg m}^2] \) Moment of inertia, reduced to clutch shaft/brake shaft

\(\text{K} \) Safety factor (≥ 2)

\(\text{Q} \quad [\text{J}] \) Switching energy per switching cycle

\(\text{Q}_{\text{E}} \quad [\text{J}] \) Permissible switching energy for single switching cycle, see Technical data

\(\text{Q}_{\text{perm}} \quad [\text{J}] \) Permissible switching energy dependent on \(S_{\text{h}} \)

\(\text{Q}_{\text{NA}} \quad [\text{kWh}] \) Permissible switching energy until readjustment

\(\text{S}_{\text{h}} \quad [\text{h}^{-1}] \) Operating frequency

(\(\text{number of cycles distributed evenly during unit of time} \))

\(\text{S}_{\text{hü}} \quad [\text{h}^{-1}] \) Transition operating frequency

(\(\text{characteristic to calculate} \ S_{\text{h}} \ \text{or} \ Q_{\text{perm}}, \ \text{see Technical data} \))

\(\text{s}_{\text{NA}} \) Number of switching operations until readjustment

\(\text{DIN} \) Deutsches Institut für Normung (German Institute for Standardisation)

\(\text{VDE} \) Verband deutscher Elektrotechniker (Association of German Electrotechnical Engineers)

Operating times

The operating times listed in the Technical data are valid for DC switching with the rated air gap and a warm coil. The times are mean values whose accuracy is dependent on the type of rectification and the air gap \(S_{\text{Lü}} \), among other things.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1) [s]</td>
<td>Engagement time, (t_1 = t_{11} + t_{12})</td>
</tr>
<tr>
<td>(t_2) [s]</td>
<td>Disengagement time (time from the beginning of the torque reduction until 0.1 (\text{MK}) is reached)</td>
</tr>
<tr>
<td>(t_3) [s]</td>
<td>Slipping time (time during which a relative motion occurs between the input and output, with clutch/brake engaged)</td>
</tr>
<tr>
<td>(t_{11}) [s]</td>
<td>Response delay time (time between the voltage being connected and the torque starting to rise)</td>
</tr>
<tr>
<td>(t_{12}) [s]</td>
<td>Rise time (time from the beginning of the torque rise until 0.9 (\text{MK}) is reached)</td>
</tr>
</tbody>
</table>
Product information

Electromagnetic clutches and brakes are used wherever rapid acceleration or deceleration of masses in motion is required.

This document describes powerful and reliable mass-produced products which have already been tried and tested in numerous applications.

A complete range
- 7 sizes
- Clutch/braking torques from 7.5 – 480 Nm

Versatile
- Suitable for any mounting position
- Clutches can be supplied as flange-mounted or shaft-mounted versions
- Various armature assembly types for clutches and brakes can be supplied to suit any application case

Torque transmission
- Friction transmission in dry running
- Immediately ready for operation
- Special machining of the friction surfaces ensures that the rated torques are achieved after very few switching operations without a run-in period, even when the product is new.

Reliable
- The certified ISO 9001 and ISO 14001 quality system provides the basis for consistently high-quality products
- Manufacture and testing to VDE 0580

Low maintenance
- Working air gap only has to be checked in relation to the friction energy used
- Wear adjustment only required at 2.5 times the rated air gap
- Asbestos-free friction linings with a low rate of wear and nitride hardened armature plates ensure a long service life and constant torques

Release without detent torque
- The prestressed annular spring on the armature assembly ensures release without residual torque on de-energisation

Short and consistent operating times
- The prestressed, backlash-free annular spring on the armature assembly enables short and constant operating times to be achieved, even with larger working air gaps

Options
- Special voltages and bores are available on request
Product information

Principle of operation
To generate the drive torque or braking torque, the stator coil is supplied with DC voltage and a magnetic field is generated. The magnetic attraction force pulls the armature plate on the armature assembly against the force of the prestressed spring across the air gap and towards the friction surface of the brake armature or rotor, thereby making torque available.

If the voltage supply is interrupted, the magnetic field will collapse and the prestressed annular spring will pull the armature plate back to its initial position.

Flange-mounted brakes
The stator and flange should be mounted centrally on the shaft. Two tolerated diameters are available for this purpose.

The clutch rotor is mounted on the shaft using a keyway connection and secured against axial movement. Mounting dimension "b" under "Dimensions" must be observed exactly.

Shaft-mounted clutches
If a suitable mounting surface for the flange stator is not available, a shaft-mounted clutch should be used. The stator is supported on the rotor. A pin, which engages in the anti-rotation tag with sufficient clearance, simply has to take up the bearing friction.

Torque is transmitted via a keyway connection as on flange-mounted clutches.

Armature assemblies
Type 1, 2 and 5 armature assemblies should be mounted on the shaft and secured against axial movement following precise setting of the working air gap sLü (see Dimensions). Armature assembly type 3 should be screwed to the element to be decelerated or accelerated (e.g. belt pulley) using the annular spring. See page 22 for the screws and lock washers to be used. Please make sure that the clearing holes for the rivet heads on the armature assembly are sufficiently large, so that the axial movement of the armature assembly is not restricted.
Selection

Dimensioning

- Only the power to be transmitted is known (estimate)

\[
M_{req} = 9550 \cdot \frac{P}{n} \cdot K \leq M_k
\]

- Dynamic load \(M_d \) (negligible static load torque \(M_{load} \))

\[
M_{req} = M_d \cdot K \leq M_k
\]

- Dynamic and static load \(M_d \) and \(M_{load} \)

\[
M_{req} = \left(M_d \pm M_{load} \right) \cdot K \leq M_k
\]

- Calculating the size by specifying the required torque \(M_{req} \)

Parameters included in the calculation are moments of inertia, relative speeds and acceleration or deceleration times.

\(K \) is a safety factor to ensure transmission security even in extreme operating conditions.

\(K \) is dependent on the prevailing operating conditions.

\(K \) is always \(\geq 2 \)

Switching energy per switching cycle:

\[
Q = \frac{J \cdot n^2}{182.5} \cdot \frac{M_k}{\left(M_k \pm M_{load} \right)}
\]

- Permissible operating frequency when switching energy per switching cycle is known

\[
S_{perm} = \frac{-S_{nu}}{I_n \left(\frac{Q}{Q^*} \right)}
\]

- Only when lowering a load

\[
+M_{load} = \text{shift/accelerate}
\]

\[
-M_{load} = \text{brake/decelerate}
\]

- Select a larger size

\(Q_{perm} \leq Q \)

- Select a smaller size

\(Q_{perm} > Q \)

Operating data calculation

\(Q_{NA} \) is indicated in the Technical data (page 11).
Selection

Permissible switching energy/operating frequency

Electromagnetic clutches
INTORQ 14.105 (7.5 – 480 Nm)
Electromagnetic brakes
INTORQ 14.115 (7.5 – 480 Nm)

Calculation example

Default parameters:

\[
\begin{align*}
J &= 0.01 \text{ kgm}^2 \\
M_{\text{load}} &= 6 \text{ Nm} \\
n &= 700 \text{ rpm} \\
t_3 &= 0.15 \text{ s} \\
t_{12} &= \text{assumed to be } 0.03 \text{ s} \\
S_h &= 5000 \text{ switching operations per hour}
\end{align*}
\]

Calculation of the required torque:

\[
M_a = \frac{J \cdot n}{9.55 \cdot \left(t_3 - \frac{t_{12}}{2}\right)} = \frac{0.01 \cdot 700}{9.55 \cdot (0.15 - 0.03)}
\]

\[
M_a = 6.1 \text{ Nm}
\]

\[
M_{\text{req}} = (M_a + M_{\text{load}}) \cdot K = (6.1 + 6) \cdot 2
\]

\[
M_{\text{req}} = 24.2 \text{ Nm}
\]

Electromagnetic clutch selected:
INTORQ 14.105.10.1.1 with
\[M_K = 30 \text{ Nm}\]

Calculation of the switching energy per switching cycle:

\[
Q = \frac{J \cdot n^2}{182.5} \cdot \frac{M_K}{M_K - M_{\text{load}}}
\]

\[
Q = \frac{0.01 \cdot 700^2}{182.5} \cdot \frac{30}{30 - 6}
\]

\[
Q = 33.6 \text{ J}
\]

Check of the permissible operating frequency:
See the diagram (above) for \(S_{\text{h,perm}}\) depending on the calculated switching energy.

For the selected size (10), the required operating frequency is permissible at the calculated switching energy.

Result:
The selected electromagnetic clutch (INTORQ 14.105.10.1.1, \(M_K = 30 \text{ Nm}\)) can be used for this application.
Technical data

Selection table

<table>
<thead>
<tr>
<th>Size</th>
<th>(M_N) (^{(1)}) [Nm]</th>
<th>(P_{\text{max}}) [W]</th>
<th>(P_{20^\circ\text{C}}) [W]</th>
<th>Operating times (^{(2)}) / (t_1) [ms]</th>
<th>(t_{12}) [ms]</th>
<th>(t_{11}) [ms]</th>
<th>(t_2) [ms]</th>
<th>(Q_E) [J]</th>
<th>(Q_{\text{NA}}) [kW]</th>
<th>(S_{\text{BD}}) [h(^{-1})]</th>
<th>(J) [10(^{-5}) kgm(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>8000</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>10</td>
<td>3.6 x 10(^3)</td>
<td>10</td>
<td>72</td>
<td>11.9</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>6000</td>
<td>30</td>
<td>25</td>
<td>55</td>
<td>75</td>
<td>15</td>
<td>6 x 10(^3)</td>
<td>16.6</td>
<td>56</td>
<td>26.5</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>5000</td>
<td>50</td>
<td>40</td>
<td>85</td>
<td>110</td>
<td>25</td>
<td>10 x 10(^3)</td>
<td>34.7</td>
<td>43</td>
<td>78</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>4000</td>
<td>65</td>
<td>55</td>
<td>105</td>
<td>140</td>
<td>40</td>
<td>16 x 10(^3)</td>
<td>68.5</td>
<td>37</td>
<td>226</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>3000</td>
<td>90</td>
<td>80</td>
<td>125</td>
<td>170</td>
<td>50</td>
<td>25 x 10(^3)</td>
<td>130.5</td>
<td>36</td>
<td>630</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>3000</td>
<td>100</td>
<td>90</td>
<td>155</td>
<td>230</td>
<td>70</td>
<td>65 x 10(^3)</td>
<td>555.5</td>
<td>22</td>
<td>5470</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>3000</td>
<td>155</td>
<td>140</td>
<td>225</td>
<td>300</td>
<td>90</td>
<td>85 x 10(^3)</td>
<td>1100</td>
<td>38</td>
<td>1250</td>
</tr>
</tbody>
</table>

Electromagnetic brakes INTORQ 14.115.

<table>
<thead>
<tr>
<th>Size</th>
<th>(M_N) (^{(1)}) [Nm]</th>
<th>(P_{\text{max}}) [W]</th>
<th>(P_{20^\circ\text{C}}) [W]</th>
<th>Operating times (^{(2)}) / (t_1) [ms]</th>
<th>(t_{12}) [ms]</th>
<th>(t_{11}) [ms]</th>
<th>(t_2) [ms]</th>
<th>(Q_E) [J]</th>
<th>(Q_{\text{NA}}) [kW]</th>
<th>(S_{\text{BD}}) [h(^{-1})]</th>
<th>(J) [10(^{-5}) kgm(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>8000</td>
<td>11.5</td>
<td>16</td>
<td>20</td>
<td>35</td>
<td>10</td>
<td>3.6 x 10(^3)</td>
<td>10</td>
<td>72</td>
<td>6</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>6000</td>
<td>16</td>
<td>15</td>
<td>25</td>
<td>40</td>
<td>20</td>
<td>6 x 10(^3)</td>
<td>16.6</td>
<td>56</td>
<td>17.1</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>5000</td>
<td>21</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>30</td>
<td>10 x 10(^3)</td>
<td>34.7</td>
<td>43</td>
<td>66.4</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>4000</td>
<td>28</td>
<td>25</td>
<td>55</td>
<td>80</td>
<td>45</td>
<td>16 x 10(^3)</td>
<td>68.5</td>
<td>37</td>
<td>180</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>3000</td>
<td>36</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>50</td>
<td>25 x 10(^3)</td>
<td>130.5</td>
<td>36</td>
<td>633.3</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>3000</td>
<td>35</td>
<td>35</td>
<td>80</td>
<td>115</td>
<td>70</td>
<td>40 x 10(^3)</td>
<td>277.7</td>
<td>28</td>
<td>1900</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>3000</td>
<td>40</td>
<td>40</td>
<td>90</td>
<td>130</td>
<td>80</td>
<td>65 x 10(^3)</td>
<td>555.5</td>
<td>22</td>
<td>4800</td>
</tr>
</tbody>
</table>

\(^{(1)}\) In relation to relative speed \(n = 100 \text{ rpm} \)

\(^{(2)}\) Mean values for DC switching with rated air gap and warm coil.

\(^{(3)}\) Standard voltage 24V \(+5\% / -10\% \) to VDE 0580

\(^{(4)}\) Temperature class B \((130^\circ\text{C}) \)
Technical data

Flange-mounted clutches
INTORQ 14.105.□.□.1.1

Technical Data Table

<table>
<thead>
<tr>
<th>Size (Nm)</th>
<th>M</th>
<th>b (min.)</th>
<th>c (max.)</th>
<th>d H7 (min.)</th>
<th>d H7 (max.)</th>
<th>d1 (h8)</th>
<th>d2 (h9)</th>
<th>d3 (H8)</th>
<th>d4</th>
<th>d5</th>
<th>d10</th>
<th>d11 H7 (min.)</th>
<th>d11 H7 (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>24</td>
<td>10</td>
<td>10;12;14;15;17</td>
<td>17</td>
<td>64</td>
<td>80</td>
<td>35</td>
<td>72</td>
<td>27</td>
<td>23</td>
<td>10;12;14;15;17</td>
<td>17</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>26.5</td>
<td>10</td>
<td>12;14;15;17;19;20</td>
<td>20</td>
<td>80</td>
<td>100</td>
<td>42</td>
<td>90</td>
<td>32</td>
<td>28.5</td>
<td>85.5</td>
<td>12;14;15;17;19;20;25</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
<td>14</td>
<td>15;19;20;24;25;26;30</td>
<td>30</td>
<td>100</td>
<td>125</td>
<td>52</td>
<td>112</td>
<td>42</td>
<td>40</td>
<td>107</td>
<td>15;19;20;24;25;26;30</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>33.5</td>
<td>14</td>
<td>20;24;25;28;30;35</td>
<td>35</td>
<td>125</td>
<td>150</td>
<td>62</td>
<td>137</td>
<td>49</td>
<td>45</td>
<td>134.3</td>
<td>20;24;25;28;30;35</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>37.5</td>
<td>4</td>
<td>20;25;28;30;35;38;40;45</td>
<td>45</td>
<td>160</td>
<td>190</td>
<td>80</td>
<td>175</td>
<td>65</td>
<td>62</td>
<td>170</td>
<td>25;25;30;35;38;40;45</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>44</td>
<td>5</td>
<td>25;30;35;40;42;45;50;55;60</td>
<td>60</td>
<td>200</td>
<td>230</td>
<td>100</td>
<td>215</td>
<td>83</td>
<td>77</td>
<td>214.3</td>
<td>25;30;35;40;42;45;50;55;60</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>61</td>
<td>6</td>
<td>30;35;40;45;50;55;60;65;70</td>
<td>80</td>
<td>250</td>
<td>290</td>
<td>125</td>
<td>270</td>
<td>105</td>
<td>100</td>
<td>266.5</td>
<td>30;40;45;50;55;60;65;70</td>
</tr>
</tbody>
</table>

Dimensions Table

<table>
<thead>
<tr>
<th>Size (Nm)</th>
<th>M</th>
<th>b</th>
<th>c</th>
<th>d H7</th>
<th>d H7</th>
<th>d1 (h8)</th>
<th>d2 (h9)</th>
<th>d3 (H8)</th>
<th>d4</th>
<th>d5</th>
<th>d10</th>
<th>d11 H7</th>
<th>d11 H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>24</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>80</td>
<td>35</td>
<td>72</td>
<td>23</td>
<td>24</td>
<td>10;12;14;15;17</td>
<td>17</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>26.5</td>
<td>2.5</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>100</td>
<td>42</td>
<td>90</td>
<td>32</td>
<td>28.5</td>
<td>85.5</td>
<td>12;14;15;17;19;20;25</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
<td>3</td>
<td>14</td>
<td>15;19;20;24;25;26;30</td>
<td>30</td>
<td>100</td>
<td>125</td>
<td>52</td>
<td>112</td>
<td>40</td>
<td>107</td>
<td>15;19;20;24;25;26;30</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>33.5</td>
<td>3.5</td>
<td>14</td>
<td>20;24;25;28;30;35</td>
<td>35</td>
<td>125</td>
<td>150</td>
<td>62</td>
<td>137</td>
<td>45</td>
<td>134.3</td>
<td>20;24;25;28;30;35</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>37.5</td>
<td>4</td>
<td>20;25;28;30;35;38;40;45</td>
<td>45</td>
<td>160</td>
<td>190</td>
<td>80</td>
<td>175</td>
<td>62</td>
<td>62</td>
<td>170</td>
<td>25;25;30;35;38;40;45</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>44</td>
<td>5</td>
<td>25;30;35;40;42;45;50;55;60</td>
<td>60</td>
<td>200</td>
<td>230</td>
<td>100</td>
<td>215</td>
<td>83</td>
<td>77</td>
<td>214.3</td>
<td>25;30;35;40;42;45;50;55;60</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>61</td>
<td>6</td>
<td>30;35;40;45;50;55;60;65;70</td>
<td>80</td>
<td>250</td>
<td>290</td>
<td>125</td>
<td>270</td>
<td>105</td>
<td>100</td>
<td>266.5</td>
<td>30;40;45;50;55;60;65;70</td>
</tr>
</tbody>
</table>

- Dimensions in mm
- Keyway to DIN 6885/1-P9
- Recommended ISO tolerances for shafts: Up to Ø 50 mm: k6
- Above Ø 50 mm: m6
Technical data

Flange-mounted clutches
INTORQ 14.105.□□.1.3

<table>
<thead>
<tr>
<th>Size</th>
<th>M [Nm]</th>
<th>b</th>
<th>c</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>d7</th>
<th>d8</th>
<th>d9</th>
<th>d10</th>
<th>d12</th>
<th>d13 H7</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>24</td>
<td>2</td>
<td>63</td>
<td>80</td>
<td>35</td>
<td>72</td>
<td>46</td>
<td>34.5</td>
<td>23</td>
<td>68</td>
<td>18</td>
<td>10;12;14;15;17</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>26.5</td>
<td>2.5</td>
<td>80</td>
<td>100</td>
<td>42</td>
<td>99</td>
<td>60</td>
<td>41.7</td>
<td>28.5</td>
<td>85.5</td>
<td>12</td>
<td>12;14;15;17;19;20;25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>30</td>
<td>3</td>
<td>100</td>
<td>125</td>
<td>52</td>
<td>112</td>
<td>76</td>
<td>51.5</td>
<td>40</td>
<td>107</td>
<td>15</td>
<td>15;19;20;24;25;28;38</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>33.5</td>
<td>3.5</td>
<td>125</td>
<td>150</td>
<td>62</td>
<td>137</td>
<td>95</td>
<td>61.5</td>
<td>45</td>
<td>134.3</td>
<td>28</td>
<td>20;38;40;42;45;50;55;68</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>37.5</td>
<td>4</td>
<td>160</td>
<td>190</td>
<td>80</td>
<td>175</td>
<td>120</td>
<td>79.5</td>
<td>62</td>
<td>170</td>
<td>25</td>
<td>25;28;30;35;38;40;45</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>44</td>
<td>5</td>
<td>200</td>
<td>230</td>
<td>100</td>
<td>215</td>
<td>158</td>
<td>99.5</td>
<td>77</td>
<td>214.3</td>
<td>25</td>
<td>5;38;40;42;45;50;55;68</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>51</td>
<td>6</td>
<td>250</td>
<td>290</td>
<td>125</td>
<td>270</td>
<td>218</td>
<td>124.5</td>
<td>100</td>
<td>266.5</td>
<td>30</td>
<td>40;45;50;55;60;65;75</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>a</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>n</th>
<th>s</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>l4</th>
<th>h4</th>
<th>t4</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>3.5</td>
<td>5.5</td>
<td>400</td>
<td>28</td>
<td>22</td>
<td>1.4</td>
<td>4 x 4.5</td>
<td>3 x 6.3</td>
<td>3 x 3.1</td>
<td>3 x 5.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.49</td>
</tr>
<tr>
<td>08</td>
<td>4.3</td>
<td>6.5</td>
<td>400</td>
<td>31</td>
<td>24</td>
<td>1.7</td>
<td>4 x 5.5</td>
<td>3 x 8</td>
<td>3 x 4.1</td>
<td>3 x 7</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.88</td>
</tr>
<tr>
<td>10</td>
<td>5.5</td>
<td>6.5</td>
<td>400</td>
<td>35.9</td>
<td>27</td>
<td>2.1</td>
<td>4 x 6.6</td>
<td>3 x 10.5</td>
<td>3 x 5.15</td>
<td>3 x 9</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>1.68</td>
</tr>
<tr>
<td>12</td>
<td>5.5</td>
<td>7.1</td>
<td>400</td>
<td>40.5</td>
<td>30</td>
<td>2.5</td>
<td>4 x 6.6</td>
<td>3 x 12</td>
<td>3 x 6.1</td>
<td>3 x 10</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>2.95</td>
</tr>
<tr>
<td>16</td>
<td>8.6</td>
<td>6.5</td>
<td>400</td>
<td>46.5</td>
<td>34</td>
<td>3</td>
<td>4 x 9</td>
<td>3 x 15</td>
<td>3 x 8.2</td>
<td>3 x 13</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>5.49</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>12.4</td>
<td>400</td>
<td>55.4</td>
<td>40</td>
<td>4</td>
<td>4 x 9</td>
<td>3 x 18</td>
<td>3 x 10.2</td>
<td>3 x 16</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>10.2</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>14.9</td>
<td>400</td>
<td>63.9</td>
<td>47</td>
<td>4.3</td>
<td>4 x 11</td>
<td>4 x 22</td>
<td>4 x 12.2</td>
<td>4 x 20</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>18.7</td>
</tr>
</tbody>
</table>

- Dimensions in mm
- Keyway to DIN 6885/1-P9
- Recommended ISO tolerances for shafts: Up to Ø 50 mm: k6
- Above Ø 50 mm: m6
Technical data

Shaft-mounted clutches
INTORQ 14.105.□□.3.1

<table>
<thead>
<tr>
<th>Size</th>
<th>M [Nm]</th>
<th>b₂</th>
<th>c₁</th>
<th>d H7</th>
<th>d H7</th>
<th>d₁ H7</th>
<th>d₁₁ H7</th>
<th>d₁ H7</th>
<th>d₁₁ H7</th>
<th>d₁ H7</th>
<th>d₁₁ H7</th>
<th>d₁ H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>26</td>
<td>1.5</td>
<td>10</td>
<td>10/12/14/15/17</td>
<td>17</td>
<td>64</td>
<td>27</td>
<td>68</td>
<td>10</td>
<td>10/12/14/15/17</td>
<td>20</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>28</td>
<td>1.5</td>
<td>10</td>
<td>12/14/15/17/19/20</td>
<td>20</td>
<td>60</td>
<td>32</td>
<td>85.5</td>
<td>12</td>
<td>12/14/15/17/19/20</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>32.5</td>
<td>2.5</td>
<td>14</td>
<td>15/19/20/24/25/26/30</td>
<td>30</td>
<td>100</td>
<td>42.5</td>
<td>107</td>
<td>15</td>
<td>15/19/20/24/25/26/30</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>36</td>
<td>2.5</td>
<td>14</td>
<td>20/24/25/28/30/35</td>
<td>35</td>
<td>125</td>
<td>52</td>
<td>134.3</td>
<td>20</td>
<td>20/24/25/28/30/35</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>41.7</td>
<td>3.5</td>
<td>20</td>
<td>25/28/30/35/38/40/45</td>
<td>45</td>
<td>140</td>
<td>73</td>
<td>170</td>
<td>25</td>
<td>25/28/30/35/38/40/45</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>48.1</td>
<td>3.5</td>
<td>25</td>
<td>35/38/40/42/45/50/55/60</td>
<td>60</td>
<td>200</td>
<td>87</td>
<td>214.3</td>
<td>25</td>
<td>35/38/40/42/45/50/55/60</td>
<td>60</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>55.2</td>
<td>3.5</td>
<td>25</td>
<td>40/45/50/55/60/65/70</td>
<td>80</td>
<td>250</td>
<td>110</td>
<td>250</td>
<td>60</td>
<td>40/45/50/55/60/65/70</td>
<td>70</td>
</tr>
</tbody>
</table>

- Dimensions in mm
- Keyway to DIN 6885/1-P9
- Recommended ISO tolerances for shafts: Up to Ø 50 mm: k₆
 Above Ø 50 mm: m₆
Technical data

Shaft-mounted clutches

INTORQ 14.105.3.3

View Z

<table>
<thead>
<tr>
<th>Size</th>
<th>M [Nm]</th>
<th>b2</th>
<th>c1</th>
<th>d₁</th>
<th>d₄</th>
<th>d₇</th>
<th>d₁₀</th>
<th>d₁₁ H7</th>
<th>d₁₁ H7</th>
<th>max. d₁₈</th>
<th>r₁</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>26</td>
<td>1.5</td>
<td>63</td>
<td>46</td>
<td>34.5</td>
<td>68</td>
<td>10</td>
<td>10;12;14;15;17</td>
<td>20</td>
<td>64</td>
<td>7.7</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>28</td>
<td>1.5</td>
<td>80</td>
<td>60</td>
<td>41.7</td>
<td>85.5</td>
<td>12</td>
<td>12;14;15;17;19;20;25</td>
<td>25</td>
<td>68</td>
<td>8.2</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>32.5</td>
<td>2.5</td>
<td>100</td>
<td>76</td>
<td>51.5</td>
<td>107</td>
<td>15</td>
<td>15;19;20;24;25;26;30</td>
<td>30</td>
<td>85</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>68</td>
<td>36</td>
<td>2.5</td>
<td>125</td>
<td>95</td>
<td>61.5</td>
<td>134.3</td>
<td>20</td>
<td>20;24;25;28;30;35</td>
<td>40</td>
<td>100</td>
<td>9.8</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>41.7</td>
<td>3.5</td>
<td>160</td>
<td>120</td>
<td>79.5</td>
<td>170</td>
<td>25</td>
<td>25;28;30;35;38;40;50</td>
<td>50</td>
<td>127</td>
<td>15.2</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>48.1</td>
<td>3.5</td>
<td>200</td>
<td>158</td>
<td>99.5</td>
<td>214.3</td>
<td>25</td>
<td>35;38;40;42;45;50;55;60</td>
<td>60</td>
<td>152.4</td>
<td>16.5</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>55.2</td>
<td>3.5</td>
<td>250</td>
<td>210</td>
<td>124.5</td>
<td>266.5</td>
<td>30</td>
<td>40;45;50;55;60</td>
<td>70</td>
<td>152.4</td>
<td>19.2</td>
</tr>
</tbody>
</table>

View Z

<table>
<thead>
<tr>
<th>Size</th>
<th>h₁</th>
<th>l₂</th>
<th>n</th>
<th>s₁</th>
<th>s₂</th>
<th>s₃</th>
<th>s₄</th>
<th>s₅</th>
<th>tₘ</th>
<th>u</th>
<th>v</th>
<th>k</th>
<th>y</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>44</td>
<td>40</td>
<td>1.4</td>
<td>3 x 6.3</td>
<td>3 x 3.1</td>
<td>3 x 5.5</td>
<td>0.2</td>
<td>0.1</td>
<td>36</td>
<td>41</td>
<td>10</td>
<td>4.1</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>38</td>
<td>43.5</td>
<td>1.7</td>
<td>3 x 8</td>
<td>3 x 4.1</td>
<td>3 x 7</td>
<td>0.2</td>
<td>0.1</td>
<td>45</td>
<td>50</td>
<td>10</td>
<td>4.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>54.9</td>
<td>49</td>
<td>2.1</td>
<td>3 x 10.5</td>
<td>3 x 5.15</td>
<td>3 x 9</td>
<td>0.2</td>
<td>0.1</td>
<td>56</td>
<td>60</td>
<td>10</td>
<td>4.1</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>62</td>
<td>55</td>
<td>2.5</td>
<td>3 x 12</td>
<td>3 x 6.1</td>
<td>3 x 10</td>
<td>0.3</td>
<td>0.1</td>
<td>68.5</td>
<td>72.5</td>
<td>10</td>
<td>4.1</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>78.5</td>
<td>61.5</td>
<td>3</td>
<td>3 x 15</td>
<td>3 x 8.2</td>
<td>3 x 13</td>
<td>0.3</td>
<td>0.2</td>
<td>87.5</td>
<td>93.5</td>
<td>20</td>
<td>8.1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>84.4</td>
<td>73</td>
<td>4</td>
<td>3 x 18</td>
<td>3 x 10.2</td>
<td>3 x 16</td>
<td>0.5</td>
<td>0.2</td>
<td>107.5</td>
<td>113.5</td>
<td>20</td>
<td>8.1</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>92.9</td>
<td>80</td>
<td>4.3</td>
<td>4 x 22</td>
<td>4 x 12.2</td>
<td>4 x 20</td>
<td>0.5</td>
<td>0.2</td>
<td>135</td>
<td>141</td>
<td>20</td>
<td>8.1</td>
<td>21.2</td>
<td></td>
</tr>
</tbody>
</table>

Recommended ISO tolerances for shafts: Up to Ø 50 mm: k₆

Recommended ISO tolerances for shafts: Above Ø 50 mm: m₆

Dimensions in mm

Keyway to DIN 6885/1-P9
Technical data

Flange-mounted clutches with flange hub on bearings INTORQ 14.105.1.5

Technical Specifications

Dimensions in mm
- **Rotor assembly:** Keyway to DIN 6885/1-P9
- **Armature assembly:** Keyway to DIN 6885/3-P9

Recommended ISO tolerances for shafts:
- Up to Ø 50 mm: k6
- Above Ø 50 mm: m6

Table: Technical Data

<table>
<thead>
<tr>
<th>Size</th>
<th>M [Nm]</th>
<th>b</th>
<th>c</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d5</th>
<th>d9</th>
<th>d10</th>
<th>d11 H7, type 1.5</th>
<th>d12 [max.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>24</td>
<td>2</td>
<td>63</td>
<td>80</td>
<td>35</td>
<td>72</td>
<td>23</td>
<td>68</td>
<td>10;12;14;15;17</td>
<td>20</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>30</td>
<td>3</td>
<td>80</td>
<td>100</td>
<td>42</td>
<td>90</td>
<td>38</td>
<td>55</td>
<td>12;14;15;17;19;20;25</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
<td>3</td>
<td>100</td>
<td>125</td>
<td>52</td>
<td>112</td>
<td>40</td>
<td>107</td>
<td>15;19;20;24;25;28;30</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>33.5</td>
<td>3.5</td>
<td>125</td>
<td>150</td>
<td>62</td>
<td>137</td>
<td>45</td>
<td>134.3</td>
<td>20;24;25;28;30;35</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>37.5</td>
<td>4</td>
<td>160</td>
<td>190</td>
<td>80</td>
<td>175</td>
<td>62</td>
<td>170</td>
<td>25;28;30;35;38;40;50</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>44</td>
<td>5</td>
<td>200</td>
<td>230</td>
<td>100</td>
<td>215</td>
<td>77</td>
<td>214.3</td>
<td>35;38;40;42;45;50;55;60</td>
<td>60</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>51</td>
<td>6</td>
<td>250</td>
<td>290</td>
<td>125</td>
<td>270</td>
<td>108</td>
<td>266.5</td>
<td>40;45;50;55;60;65;70</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>d13 k6</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>i1</th>
<th>k1</th>
<th>l1</th>
<th>l2</th>
<th>l4</th>
<th>p</th>
<th>k12a</th>
<th>k8</th>
<th>50</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>38</td>
<td>3.5</td>
<td>5.5</td>
<td>400</td>
<td>31</td>
<td>51</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>22</td>
<td>4 x 4.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>08</td>
<td>45</td>
<td>4.3</td>
<td>6.5</td>
<td>400</td>
<td>35</td>
<td>60</td>
<td>24</td>
<td>25</td>
<td>22</td>
<td>30.5</td>
<td>4 x 5.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>5</td>
<td>6.5</td>
<td>400</td>
<td>40.9</td>
<td>70.9</td>
<td>27</td>
<td>31.5</td>
<td>26.5</td>
<td>37.9</td>
<td>4 x 6.6</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>7.5</td>
<td>8</td>
<td>400</td>
<td>46.5</td>
<td>85.5</td>
<td>30</td>
<td>43</td>
<td>36.5</td>
<td>50</td>
<td>4 x 6.6</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>16</td>
<td>75</td>
<td>8.6</td>
<td>8.6</td>
<td>400</td>
<td>53.5</td>
<td>103.5</td>
<td>34</td>
<td>54</td>
<td>44.5</td>
<td>63</td>
<td>4 x 9</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>12.4</td>
<td>12.4</td>
<td>400</td>
<td>65.4</td>
<td>125.4</td>
<td>40</td>
<td>64</td>
<td>53.5</td>
<td>78.4</td>
<td>4 x 9</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>25</td>
<td>115</td>
<td>8</td>
<td>14.9</td>
<td>400</td>
<td>74.9</td>
<td>144.9</td>
<td>47</td>
<td>76</td>
<td>64</td>
<td>88.9</td>
<td>4 x 11</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Notes:
- Dimensions in mm
- Rotor assembly: Keyway to DIN 6885/1-P9
- Armature assembly: Keyway to DIN 6885/3-P9
- Recommended ISO tolerances for shafts: Up to Ø 50 mm: k6
 - Above Ø 50 mm: m6
Technical data

Shaft-mounted clutches with flange hub on bearings INTORQ 14.105.□.3.5

<table>
<thead>
<tr>
<th>Size</th>
<th>M [Nm]</th>
<th>b₂</th>
<th>c₁</th>
<th>d₁ h8</th>
<th>d₁₀</th>
<th>d₁₁ H7 min.</th>
<th>d₁₁ H7, type 3.5</th>
<th>d₁₂ max.</th>
<th>d₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>26</td>
<td>1.5</td>
<td>63</td>
<td>68</td>
<td>10</td>
<td>10,12,14,16,17,17</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>28</td>
<td>1.5</td>
<td>80</td>
<td>85.5</td>
<td>12</td>
<td>12,14,15,17,19,20,25</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>32.5</td>
<td>2.5</td>
<td>100</td>
<td>107</td>
<td>15</td>
<td>15,19,20,24,25,26,30</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>36</td>
<td>2.5</td>
<td>125</td>
<td>134.3</td>
<td>20</td>
<td>20,24,25,26,30,35,40</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>41.7</td>
<td>3.5</td>
<td>160</td>
<td>179</td>
<td>25</td>
<td>25,28,30,35,38,40,50</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>48.1</td>
<td>3.5</td>
<td>200</td>
<td>214.3</td>
<td>25</td>
<td>35,38,40,42,45,50,55,60</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>55.2</td>
<td>3.5</td>
<td>250</td>
<td>266.5</td>
<td>30</td>
<td>40,45,50,55,60,65,70</td>
<td>80</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>d₁₃ k₆</th>
<th>d₁₄</th>
<th>f₁</th>
<th>g₁</th>
<th>h₁</th>
<th>k₃</th>
<th>l₁</th>
<th>l₄</th>
<th>p</th>
<th>x₁₀</th>
<th>x₉</th>
<th>u₁</th>
<th>v</th>
<th>x</th>
<th>y</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>38</td>
<td>64</td>
<td>7.7</td>
<td>400</td>
<td>47</td>
<td>67</td>
<td>40</td>
<td>18</td>
<td>17</td>
<td>0.2</td>
<td>0.1</td>
<td>36</td>
<td>41</td>
<td>10</td>
<td>4.1</td>
<td>9.99</td>
</tr>
<tr>
<td>08</td>
<td>45</td>
<td>68</td>
<td>8.2</td>
<td>400</td>
<td>52</td>
<td>77</td>
<td>43.5</td>
<td>25</td>
<td>22</td>
<td>0.2</td>
<td>0.1</td>
<td>45</td>
<td>50</td>
<td>10</td>
<td>4.1</td>
<td>1.56</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>85</td>
<td>9.2</td>
<td>400</td>
<td>68</td>
<td>90</td>
<td>49</td>
<td>31.5</td>
<td>26.5</td>
<td>37.9</td>
<td>0.2</td>
<td>0.1</td>
<td>56</td>
<td>60</td>
<td>10</td>
<td>4.1</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>100</td>
<td>9.8</td>
<td>400</td>
<td>88</td>
<td>108</td>
<td>55</td>
<td>43</td>
<td>36.5</td>
<td>50</td>
<td>0.3</td>
<td>0.1</td>
<td>68.5</td>
<td>72.5</td>
<td>10</td>
<td>4.1</td>
</tr>
<tr>
<td>16</td>
<td>75</td>
<td>127</td>
<td>15.2</td>
<td>400</td>
<td>77.5</td>
<td>127.5</td>
<td>61.5</td>
<td>54</td>
<td>44.5</td>
<td>63</td>
<td>0.3</td>
<td>0.2</td>
<td>87.5</td>
<td>93.5</td>
<td>20</td>
<td>8.1</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>152.4</td>
<td>16.5</td>
<td>400</td>
<td>94.4</td>
<td>154.4</td>
<td>73</td>
<td>64</td>
<td>53.5</td>
<td>78.4</td>
<td>0.5</td>
<td>0.2</td>
<td>107.5</td>
<td>113.5</td>
<td>20</td>
<td>8.1</td>
</tr>
<tr>
<td>25</td>
<td>115</td>
<td>152.4</td>
<td>19.2</td>
<td>400</td>
<td>103.9</td>
<td>173.9</td>
<td>80</td>
<td>76</td>
<td>64</td>
<td>88.9</td>
<td>0.5</td>
<td>0.2</td>
<td>135</td>
<td>141</td>
<td>20</td>
<td>8.1</td>
</tr>
</tbody>
</table>

- Dimensions in mm
- Rotor assembly: Keyway to DIN 6885/1-P9
- Armature assembly: Keyway to DIN 6885/3-P9

- Recommended ISO tolerances for shafts: Up to Ø 50 mm: k₆
 Above Ø 50 mm: m₆
Technical data

Electromagnetic brakes

INTORQ 14.115.□□.1.1

Dimensions in mm

<table>
<thead>
<tr>
<th>Size</th>
<th>M (Nm)</th>
<th>b</th>
<th>c</th>
<th>d H7 min.</th>
<th>d H7 max.</th>
<th>d1 h8</th>
<th>d2 h9</th>
<th>d3 h8</th>
<th>d4</th>
<th>d5</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>18</td>
<td>2</td>
<td>10</td>
<td>10;12;14;15;17</td>
<td>17</td>
<td>63</td>
<td>80</td>
<td>35</td>
<td>27</td>
<td>3.5</td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>20</td>
<td>2.5</td>
<td>10</td>
<td>12;14;15;17;19;20</td>
<td>20</td>
<td>80</td>
<td>100</td>
<td>42</td>
<td>32</td>
<td>4.3</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>22</td>
<td>3</td>
<td>14</td>
<td>15;19;20;24;25;29;30</td>
<td>30</td>
<td>100</td>
<td>125</td>
<td>52</td>
<td>112</td>
<td>42.5</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>24</td>
<td>3.5</td>
<td>14</td>
<td>20;24;25;28;30;35</td>
<td>35</td>
<td>125</td>
<td>150</td>
<td>62</td>
<td>137</td>
<td>52</td>
</tr>
<tr>
<td>16</td>
<td>120</td>
<td>26</td>
<td>4</td>
<td>20</td>
<td>25;28;30;35;38;40;45</td>
<td>45</td>
<td>160</td>
<td>200</td>
<td>80</td>
<td>175</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
<td>30</td>
<td>5</td>
<td>25</td>
<td>35;38;40;42;45;50;55;60</td>
<td>60</td>
<td>200</td>
<td>230</td>
<td>100</td>
<td>215</td>
<td>87</td>
</tr>
<tr>
<td>25</td>
<td>480</td>
<td>35</td>
<td>6</td>
<td>25</td>
<td>40;45;50;55;60;65;70</td>
<td>80</td>
<td>250</td>
<td>290</td>
<td>125</td>
<td>270</td>
<td>110</td>
</tr>
</tbody>
</table>

Keyway to DIN 6885/1-P9

- Dimensions in mm
- Recommended ISO tolerances for shafts: Up to Ø 50 mm: k6
- Above Ø 50 mm: m6
Technical data

Electromagnetic brakes INTORQ 14.115.1.2 and INTORQ 14.115.1.3

Size M

<table>
<thead>
<tr>
<th>Size</th>
<th>b (mm)</th>
<th>c (mm)</th>
<th>d H7 min.</th>
<th>d H7 max.</th>
<th>d1 (mm)</th>
<th>d2 (mm)</th>
<th>d3 (mm)</th>
<th>d5 (mm)</th>
<th>d6 (mm)</th>
<th>d7 (mm)</th>
<th>h8 (mm)</th>
<th>h9 (mm)</th>
<th>H8 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>18</td>
<td>2</td>
<td>18</td>
<td>10;12;14;15;17</td>
<td>17</td>
<td>63</td>
<td>80</td>
<td>35</td>
<td>72</td>
<td>46</td>
<td>34.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>20</td>
<td>2.5</td>
<td>19</td>
<td>12;14;15;17;19;20</td>
<td>20</td>
<td>80</td>
<td>100</td>
<td>42</td>
<td>90</td>
<td>60</td>
<td>41.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>3</td>
<td>14</td>
<td>15;19;20;24;25;26;30</td>
<td>30</td>
<td>100</td>
<td>125</td>
<td>52</td>
<td>112</td>
<td>76</td>
<td>51.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>3.5</td>
<td>14</td>
<td>20;24;25;28;30;35</td>
<td>35</td>
<td>125</td>
<td>150</td>
<td>62</td>
<td>137</td>
<td>95</td>
<td>61.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>26</td>
<td>4</td>
<td>20</td>
<td>25;28;30;35;38;40;45</td>
<td>45</td>
<td>160</td>
<td>190</td>
<td>80</td>
<td>175</td>
<td>120</td>
<td>79.5</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>5</td>
<td>25</td>
<td>35;38;40;42;45;50;55;60</td>
<td>60</td>
<td>200</td>
<td>230</td>
<td>130</td>
<td>215</td>
<td>158</td>
<td>99.5</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>6</td>
<td>25</td>
<td>40;45;50;55;60;65;70</td>
<td>70</td>
<td>250</td>
<td>290</td>
<td>125</td>
<td>270</td>
<td>210</td>
<td>124.5</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Size</th>
<th>M (Nm)</th>
<th>b (mm)</th>
<th>c (mm)</th>
<th>d H7</th>
<th>d H7</th>
<th>d1 (mm)</th>
<th>d2 (mm)</th>
<th>d3 (mm)</th>
<th>d5 (mm)</th>
<th>d6 (mm)</th>
<th>d7 (mm)</th>
<th>h8 (mm)</th>
<th>h9 (mm)</th>
<th>H8 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>7.5</td>
<td>18</td>
<td>2</td>
<td>18</td>
<td>10;12;14;15;17</td>
<td>17</td>
<td>63</td>
<td>80</td>
<td>35</td>
<td>72</td>
<td>46</td>
<td>34.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>15</td>
<td>20</td>
<td>2.5</td>
<td>19</td>
<td>12;14;15;17;19;20</td>
<td>20</td>
<td>80</td>
<td>100</td>
<td>42</td>
<td>90</td>
<td>60</td>
<td>41.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>22</td>
<td>3</td>
<td>14</td>
<td>15;19;20;24;25;26;30</td>
<td>30</td>
<td>100</td>
<td>125</td>
<td>52</td>
<td>112</td>
<td>76</td>
<td>51.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>24</td>
<td>3.5</td>
<td>14</td>
<td>20;24;25;28;30;35</td>
<td>35</td>
<td>125</td>
<td>150</td>
<td>62</td>
<td>137</td>
<td>95</td>
<td>61.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>26</td>
<td>4</td>
<td>20</td>
<td>25;28;30;35;38;40;45</td>
<td>45</td>
<td>160</td>
<td>190</td>
<td>80</td>
<td>175</td>
<td>120</td>
<td>79.5</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>45</td>
<td>30</td>
<td>5</td>
<td>25</td>
<td>35;38;40;42;45;50;55;60</td>
<td>60</td>
<td>200</td>
<td>230</td>
<td>130</td>
<td>215</td>
<td>158</td>
<td>99.5</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>35</td>
<td>6</td>
<td>25</td>
<td>40;45;50;55;60;65;70</td>
<td>70</td>
<td>250</td>
<td>290</td>
<td>125</td>
<td>270</td>
<td>210</td>
<td>124.5</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions in mm

| Keyway to DIN 6885/1-P9

|recommended ISO tolerances for shafts: Up to Ø 50 mm: k6

| Above Ø 50 mm: m6

Diagram

- **A or B**

18
Accessories

Transformer switch TS 48 INTORQ 14.610.11.048

Features
- Transformer switch TS 48 contains the entire current supply for a 24 V DC coil with transformer, rectifier and switching transistor with suppressor circuit.
- A transistor is used for switching; there is no contact wear.
- The high induced voltage enables the release times indicated in the catalogue for DC switching to be achieved.

Applications
- Current supply for 24 V coils on AC mains.
- Normal excitation with rated coil voltage.
- Switching of coil current via PLC, proximity switch, contacts, control voltage 5 – 24 V.

Technical data
- Normal excitation: 24 V.
- Mains voltage: 230 V, 50/60 Hz.
- Coil voltage: 24 V.
- Max. coil load: 50 W.
- Max. operating frequency:
 - Up to 35 W: 5 switching operations/s.
 - Up to 50 W: 2 switching operations/s.
- Connectable coils: 1 x.
- Switching of coil current: Transistor.
- The entire switching operation is potential-free.
- Control current at 24 V: Approx. 1 mA.
- Weight: 1.5 kg.

Dimensions

Connection examples

Control via PLC

Control via contact

Control via 2-wire proximity switch
Accessories

Spark suppressor INTORQ 14.198.00.01/02/03

Features
The INTORQ spark suppressor protects the coil and contact against impermissibly high induced voltages with DC switching. In the absence of a suppressor circuit, the induced voltage may exceed the permissible values specified in VDE 0580 and cause coils to fail.

The spark suppressor comprises an induction-free pulse capacitor which takes up the high-speed current peaks which occur during switching. This significantly reduces the spark at the contact (contact wear).

Application
Suppressor circuit for coil and contact:
- Limitation of induced voltage at coils
- Spark suppression at switching contacts
- Increase in service life of coils and contacts

Dimensions

Technical data

<table>
<thead>
<tr>
<th>INTORQ</th>
<th>Coil voltage</th>
<th>Max. mains voltage</th>
<th>Max. coil voltage</th>
<th>Capacitor voltage</th>
<th>b₁</th>
<th>b₂ approx.</th>
<th>d</th>
<th>e approx.</th>
<th>h</th>
<th>l₁</th>
<th>l₂ approx.</th>
<th>m (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.198.00.01</td>
<td>24 V – 50 V</td>
<td>60 V~</td>
<td>110 W</td>
<td>250 V~</td>
<td>8.5</td>
<td>12.5</td>
<td>0.7</td>
<td>22.5</td>
<td>18.5</td>
<td>26.5</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>14.198.00.02</td>
<td>50 V – 120 V</td>
<td>250 V~</td>
<td>110 W</td>
<td>630 V~</td>
<td>15</td>
<td>21</td>
<td>0.7</td>
<td>37.5</td>
<td>26</td>
<td>41.5</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>14.198.00.03</td>
<td>120 V – 200 V</td>
<td>400 V~</td>
<td>110 W</td>
<td>1000 V~</td>
<td>13</td>
<td>20</td>
<td>0.7</td>
<td>37.5</td>
<td>24</td>
<td>41.5</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>14.198.00.04</td>
<td>200 V – 250 V</td>
<td>555 V~</td>
<td>110 W</td>
<td>1000 V~</td>
<td>13</td>
<td>20</td>
<td>0.7</td>
<td>37.5</td>
<td>24</td>
<td>41.5</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Connection examples

Parallel to contact

Parallel to coil
Accessories

SEGC high-speed switchgear INTORQ 14.611

Features
INTORQ-SEGC high-speed switchgear is used for the high-speed excitation of DC voltage coils and reduces engagement times to as little as 10% of the values indicated in the Technical data.

Switching is wear-free via semiconductors. This makes simple activation with auxiliary contacts, control voltages or proximity switches possible. Following overexcitation, the coil operating voltage is automatically reduced to the holding voltage.

For more detailed technical information, see the “Electronic switchgear” manual.

Application
High-speed excitation of DC voltage coils with a rated voltage of 24 to 205 V.

You can use INTORQ-SEGC high-speed switchgear on electromagnetic clutches/electromagnetic brakes to achieve:
- Shorter acceleration/deceleration times
- Higher operating frequencies
- Improved operating accuracy
- Reduced wear
- Improved stopping accuracy

SEGC-Electronic INTORQ 14.611.12
- Structure: 220 x 150 mm PCB
- Connection via 10-pin terminal strip
- Max. connected load 100 W
- Required accessories: MP capacitor

SEGC-Europe INTORQ 14.611.14(16)
- In terms of electronics, design is identical to that of the SEGC-Electronic
- Constructed with European standard board dimensions 160 x 100 mm
- Connection via 31-pin DIN plug connector
- Max. connected load 40 W/100 W
- Required accessories: MP capacitor, plug-in rack
General information for assembly

- Assembly and maintenance work may only be carried out by specialist personnel with appropriate training, and only in accordance with the specifications in the Operating and Mounting Instructions.
- Grease or oil on friction surfaces reduces the drive/braking torque. For this reason, friction surfaces must be kept free of grease and oil.
- The regulations set out in the machine safety law for rotary drive elements must be observed.

- If units with large diameters are switched in at high speeds, the high relative speed at the friction surfaces can cause sparking. The use of a suitable cover is recommended.
- The air gap S_{LU} must be checked at regular intervals and readjusted no later than $2.5 \times S_{LU}$ (see Technical data).

Screws, screw locking element and tapped hole for fastening type 3 armature assembly

<table>
<thead>
<tr>
<th>Size</th>
<th>Screws</th>
<th>DIN</th>
<th>Schnorr screw locking element</th>
<th>Ø d [mm]</th>
<th>t [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>M 3 x 8</td>
<td>DIN 84</td>
<td>Schnorr lock washer 3.0</td>
<td>3.1</td>
<td>0.8</td>
</tr>
<tr>
<td>08</td>
<td>M 4 x 10</td>
<td>DIN 84</td>
<td>Schnorr lock washer 4.0</td>
<td>4.1</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>M 5 x 12</td>
<td>DIN 4912</td>
<td>Schnorr lock washer 5.0</td>
<td>5.1</td>
<td>1.5</td>
</tr>
<tr>
<td>12</td>
<td>M 6 x 16</td>
<td>DIN 7984</td>
<td>Schnorr lock washer 6.0</td>
<td>6.1</td>
<td>2.8</td>
</tr>
<tr>
<td>16</td>
<td>M 8 x 20</td>
<td>DIN 7984</td>
<td>Schnorr lock washer 8.0</td>
<td>8.2</td>
<td>3.5</td>
</tr>
<tr>
<td>20</td>
<td>M 10 x 25</td>
<td>DIN 7984</td>
<td>Schnorr lock washer 10</td>
<td>10.2</td>
<td>3.5</td>
</tr>
<tr>
<td>25</td>
<td>M 12 x 25</td>
<td>DIN 7984</td>
<td>Schnorr lock washer 12</td>
<td>12.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

* Available from:
Adolf Schnorr GmbH & Co. KG
PO Box 60 01 62 · 71050 Sindelfingen, Germany
Tel. +49 (0) 70 31 30 20 · Fax +49 (0) 70 31 38 25 00
Installation examples

Electromagnetic clutch INTORQ 14.105.03.115.
with a V-belt pulley attached to the armature assembly. The air gap is set using disc springs between the ball bearing and rotor. A pin in the lug on the stator prevents the stator from being turned as a result of friction in the ball bearing.

Electromagnetic brake INTORQ 14.115.03.115.13
with flange-mounted belt pulley. The stator is mounted centrally on the shaft using a ball bearing. The air gap is set using a spacer ring and shims between the ball bearing and belt pulley.

Electromagnetic clutch INTORQ 14.105.03.115.11
to connect two aligned shafts. Centring to shaft by means of tolerated outer diameter of stator. The rotor is mounted on the driving shaft using a keyway connection and secured against axial movement. A keyway connection is also used to mount and secure the armature assembly against axial movement on the shaft to be linked. Shims should be used to set the air gap.
Our customers can reach us at any time and from anywhere in the world. Our Key Account Sales Team looks after key account customers and project business.

In addition, we co-operate with Lenze’s global sales organisation. You can contact us via Lenze Service by calling the 24-hour helpline (00800 24 46177).

INTORQ GmbH & Co. KG
PO Box 1103
31849 Aerzen, Germany

Wülmser Weg 5
31855 Aerzen, Germany

Tel.: +49 (0)5154 70534-0
Fax: +49 (0)5154 70534-200
E-mail: info@intorq.de
www.intorq.de

INTORQ – Sales and Service around the world